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Abstract
A new algorithm for evaluating metamer mismatch volumes

is introduced. Unlike previous methods, the proposed method

places no restrictions on the set of possible object reflectance

spectra. Such restrictions lead to approximate solutions for the

mismatch volume. The new method precisely characterizes the

volume in all circumstances.

Introduction
Two objects (surface reflectances) of the same colour

(speaking informally) under one light can differ in colour un-

der a second light. That is, they may be equal in CIE XYZ (for

example) under the first light, but differ in CIE XYZ under the

second. They are metameric matches under the first light, but

fail to match, and hence are no longer metamers, under the sec-

ond. If a colour under one light can become two colours under a

second light, then it is natural to ask: What is the range of pos-

sible colours that the observed colour might become under the

second light? For example, given an XYZ under CIE illuminant

D65, what is the set of possible XYZ that could arise under CIE

illuminant A? This set is commonly known as the metamer mis-

match volume. In general, given the spectral power distributions

of two illuminants and the colour of an object under one illumi-

nant, the problem is to compute the metamer mismatch volume

(i.e., the set of colours) that could possibly arise under the second

illuminant.

Metamer mismatch volumes are important because they

arise in colour correction, camera design (sensors leading to the

smallest metamer mismatch volumes will be colormetrically the

most accurate), and lighting design (lights that lead to the small-

est mismatch volumes will have the best colour rendering). Pre-

vious work on mismatch volumes has been based on finding “nat-

ural” metameric spectra or metameric blacks [1, 9] using linear

programming or Monte Carlo methods [10]. There have been

promising results in colour correction using the volumes com-

puted by these methods [9, 4, 2, 3]. However, of the methods

proposed thus far, none directly describes the theoretical limits

of the metamer mismatch volumes.

In this report we investigate the boundary of the metamer

mismatch volume from the formal point of view and then pro-

vide an algorithm for computing metamer mismatch volumes for

arbitrary, strictly positive illuminants without placing any restric-

tions on the reflectances.

Metamer Mismatch Volume Theory
Consider a set of colour mechanisms Φ = (ϕ1, ...,ϕn), the

response of each of which to a reflecting object with spectral

reflectance function x(λ ) illuminated by a light with spectral

power distribution p(λ ) is given by

ϕi (x) =

ˆ λmax

λmin

x(λ ) p(λ )si (λ )dλ (i = 1, ...,n) , (1)

where [λmin,λmax] is the visible spectrum interval, and si (λ )
is the spectral sensitivity of the i-th colour mechanism. The

vector Φ(x) = (ϕ1 (x) , ...,ϕn (x)) of the colour mechanism re-

sponses will be referred to as the colour signal produced by

the colour mechanisms Φ in response to x(λ ) illuminated by

p(λ ). In the case of trichromatic human colour vision n = 3,

and s1 (λ ) ,s2 (λ ) , and s3 (λ ) are either colour matching func-

tions, or cone fundamentals. Alternatively, s1 (λ ) ,s2 (λ ) , and
s3 (λ ) can be treated as the sensors’ spectral sensitivity functions
of a digital camera or similar device.

Different objects may happen to produce equal colour sig-

nals. Such objects are called metameric. Specifically, two

objects with spectral reflectance functions x(λ ) and x′ (λ ) are

called metameric under the illuminant p(λ ) if they produce

equal colour signals, that is, Φ(x) = Φ(x′). Object metamerism

depends on the illuminant. If the illuminant p(λ ) is replaced

by a different illuminant p′ (λ ) the hitherto metameric ob-

jects may cease to be metameric. In other words, the former

metamers may no longer match under the new illuminant. This

phenomenon—object metamers becoming non-metamers—will

be called metamer mismatching.

The same type of metamer mismatch may happen if the

spectral sensitivity of the colour mechanisms changes. An il-

luminant change (i.e., replacing p(λ ) with p′ (λ )) is, formally,

equivalent to changing the spectral sensitivity functions of the

colour mechanisms. As a consequence, we will consider the

general situation when a set of colour mechanisms ϕ1, ...,ϕn is

replaced by a different set ψ1, ...,ψn. The new set of colour

mechanisms can be understood as the result of altering either

the illuminant or the colour mechanisms’ spectral sensitivities,

or both.

Consider two sets of colour mechanisms: Φ = (ϕ1, ...,ϕn)
and Ψ = (ψ1, ...,ψn). Note that both the Φ and Ψ can be con-

sidered as linear maps (referred to as colour maps) of the form

of: X →R
n where X is the set of all the spectral reflectance

functions (i.e., such that 0≤ x(λ )≤ 1), and R
n is the arithmetic

n-dimensional vector space. The sets of all colour signals, that is,

Φ(X ) and Ψ(X ), form convex volumes in R
n that are usually

referred to as object-colour solids.

Given an object x0 ∈ X , the Φ−pre-image Φ−1(Φ(x0))
(i.e., Φ−1(Φ(x0)) = {x ∈X |Φ(x) = Φ(x0)}) of its colour sig-
nal Φ(x0) is the set of all the objects metameric to x0 (with re-

spect to Φ), and is referred to as its metamer set. Generally,

when this set of metameric objects Φ−1(Φ(x0)) is mapped by Ψ

into the Ψ-colour solid, it will be spread into a non-singleton set.

The resulting set is usually referred to as the metamer mismatch

volume. Formally, the Ψ−image of the set of the Φ-metamers

Ψ(Φ−1(Φ(x0)))will be called the metamer mismatch volume in-

duced by x0.

Given two colour maps, Φ = (ϕ1, ...,ϕn) and Ψ =
(ψ1, ...,ψn), let us consider a map ϒ :X →R

2n such that ϒ(x) =
(z;z′), where z = (ϕ1 (x) , ...,ϕn (x)) and z

′ = (ψ1 (x) , ...,ψn (x)).
The corresponding object-colour solid ϒ(X ) is a convex subset

in R
2n. The Φ-object-colour solid, Φ(X ), is the z−projection of

ϒ(X ):

Φ(X ) = {z ∈ R
n : (z;z′) ∈ ϒ(X ), z

′ ∈ R
n}.
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Similarly, given an object x0 ∈ X and its Φ−colour signal

z0 = Φ(x0), the metamer mismatch volume Ψ(Φ−1(z0)) forms a

cross-section of ϒ(X ); namely, {z′ ∈ R
n : (z0;z

′) ∈ ϒ(X )}.
To gain some intuition into the metamer sets, metamer mis-

match volumes and why the metamer mismatch volume corre-

sponds to a cross-section of the ϒ(X ) object-colour solid, con-
sider the case of a monochromatic sensor system. In this 1-

dimensional case, the colour maps become simply Φ = (ϕ1) and
Ψ = (ψ1), and ϒ(X ), their Cartesian product, becomes a con-

vex region in 2-dimensions as shown in Figure 1. For Figure 1

the CIE 1931 x̄(λ ) colour matching function has been used as

the single underlying sensor class. Under illuminants D65 and

A (spectral power distributions pD65(λ ) and pA(λ )) the corre-

sponding colour mechanisms are then ϕ1 = (pD65(λ )x̄(λ )) and
ψ1 = (pA(λ )x̄(λ )).

For a given colour signal z0 obtained under D65, finding the

metamer mismatch volume means determining the boundary of

the set of possible colour signals z′ arising under A whose cor-

responding reflectances would be metameric to z0 under D65.

The shaded region in Figure 1 shows ϒ(X ). Any point (z,z′)
inside ϒ(X ) represents the corresponding colour signals that

would arise from a given object under illuminants D65 and A.

As can be seen from the figure, given z0 = 35, for example, all

points (z0,z
′) on the vertical line z = z0 = 35 and lying within

the shaded area arise from objects that are metameric under D65

and also result in colour signal z′ under A. Hence the z′ values

from the vertical line segment lying within the shaded area make

up the metamer mismatch volume for the colour signal z0 = 35

under D65. In this example, the ’volume’ degenerates to a line

segment on the z′ axis. The boundary of the volume is given by

the z′ at the intersections of the z = 35 line with the boundary of

ϒ(X ) (i.e., z′ = 20.5 and z′ = 58).

The situation is analogous for a trichromatic colour device,

but ϒ(X ) becomes 6-dimensional and the cross-section is de-

fined by the intersection of a 3-dimensional affine subspace with

the boundary of ϒ(X ). In the general n-dimensional case, eval-

uating the boundary of the metamer mismatch volume induced

by the colour signal Φ(x0) when switching from colour map Φ

to colour map Ψ requires determining the cross-section of the

boundary of the 2n-dimensional object-colour solid ϒ(X ) de-

fined by its intersection with the n-dimensional affine subspace

containing Φ(x0).
The object-colour solid is determined by its boundary—

written as ∂ϒ(X ))—which is fully specified by those objects

that map to its boundary. In the colour literature such objects are

called optimal [10]. Schrödinger was, probably, the first to real-

ize that the optimal spectral reflectance functions can take only

two values: either 0 or 1 [8]. He claimed that for human colour

vision the optimal spectral reflectance functions have the form of

so-called elementary step functions. The reflectance functions

x1 (λ ;λ1) =

{

0, if λ < λ1;

1, if λ ≥ λ1
(2)

and

1− x1 (λ ;λ1)

will be called the elementary step functions of type 1. Reflectance

functions

xm (λ ;λ1, ...,λm) =
m

∑
i=1

(−1)i−1
x1 (λ ;λi) (3)

and

Figure 1: Illustration of metamer mismatch volume for a

monochromatic colour device based on CIE x̄(λ ). The shaded

area indicates ϒ(X ), which is the set of all “colour” signal pairs
arising under D65 and A from all possible object reflectances.

The boundary of the metamer mismatch volume (two points in

this example) for colour signal value 35 under D65 is obtained

from the projection onto the vertical axis of the cross-section of

ϒ(X ) defined by the intersection of the vertical line with the

boundary of ϒ(X ). In this example, the colour signal z0 = 35

under D65 could, under A, potentially take on any value in the

metamer mismatch volume z′ ∈ [20.5,58].

1− xm (λ ;λ1, ...,λm)

where λmin < λ1 < λ2 < ... < λm < λmax, will be called the el-

ementary step functions of type m, with λ1, ...,λm being referred

to as transition wavelengths. Schrödinger claimed that for hu-

man vision the optimal spectral reflectance functions were of

type m < 3.

In the general case, the number of transition wavelengths

may exceed the number of the colour mechanisms. Indeed, a the-

orem has been proved [7] showing that, for a colour map Φ with

continuous spectral sensitivity functions s1 (λ ) , ...,sn (λ ), an ele-
mentary step function with transition wavelengths λ1, ...,λm will

be an optimal spectral reflectance function if λ1, ...,λm are the

only roots of the following equation

k1s1 (λ )+ k2s2 (λ )+ ...+ knsn (λ ) = 0, (4)

where k1,k2, ..., kn are arbitrary real numbers (at least one of

which is not equal to zero).

Given another colour map Ψ with continuous spectral sen-

sitivity functions s′1 (λ ) , ...,s
′
n (λ ) and combining it with Φ to

form the colour map ϒ, the roots of the equation

k1s1 (λ )+ ...+ knsn (λ )+ k′1s′1 (λ )+ ...+ k′ns′n (λ ) = 0 (5)

will determine an optimal spectral reflectance function with re-

spect to ϒ. Let us designate it x(λ ;k,k′), where k = (k1, ...,kn),
and k

′ =
(

k′1, ...,k
′
n

)

.

Now, consider an arbitrary object x0 mapping into the inte-

rior of the colour solid Φ(X ), and let Φ(x0) = z0 be its colour
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signal. Then the boundary of the metamer mismatching volume

in the colour solid Ψ(X ) will be implicitly defined by the fol-

lowing equation with respect to k and k
′:

Φ
(

x
(

λ ;k,k′
))

= z0. (6)

As z0 is an interior point, k
′ cannot equal zero (if k

′ = 0,

x(λ ;k,k′) will be an optimal spectral reflectance function with

respect to Φ, thus, Φ(x(λ ;k,k′)) will belong to the Φ-object-

colour-solid boundary).

Let us consider a particular case, restricting ourselves to the

CIE 1931 colour matching functions (s1 (λ ) ,s2 (λ ) ,s3 (λ )), and
the CIE illuminants D65 (pD65 (λ )) and A (pA (λ ))[10]. Equa-

tion 5 then takes the form

(k1s1 (λ )+ k2s2 (λ )+ k3s3 (λ )) pD65 (λ )

+
(

k′1s1 (λ )+ k′2s2 (λ )+ k′3s3 (λ )
)

pA (λ ) = 0. (7)

As shown elsewhere [6], for the CIE 1931 colour matching func-

tions the optimal stimuli for the Φ- and Ψ-object-colour solids

have the form of elementary step functions of type m < 3 (in ac-

cord with Schrödinger’s conjecture). From computational testing

(i.e., random choices of the 5 transition wavelengths always led

to solutions to equation (7)) it appears that the optimal stimuli

for the ϒ-object-colour solid have the form of elementary step

functions of type m < 6. Therefore, given a point z0 = (z1,z2,z3)
in the object-colour solid Φ(X ), the boundary of the metamer

mismatch volume in the colour solid Ψ(X ) will be implicitly

defined by the following equations with respect to the transition

wavelengths λ1, ...,λ5:

ϕ1 (x5 (λ ;λ1, ...,λ5)) = z1, (8)

ϕ2 (x5 (λ ;λ1, ...,λ5)) = z2,

ϕ3 (x5 (λ ;λ1, ...,λ5)) = z3.

Given Ψ(x0)=
(

z′1,z
′
2,z

′
3

)

, let us introduce the polar coordi-

nate system (ρ,β ,γ) in the Ψ-subspace with the origin at Ψ(x0).
Let x5 (λ ;λ1, ...,λ5) satisfy Eq. 8. Then we have

ψ1 (x5 (λ ;λ1, ...,λ5))− z′1 = ρ cosβ sinγ, (9)

ψ2 (x5 (λ ;λ1, ...,λ5))− z′2 = ρ sinβ sinγ,

ψ3 (x5 (λ ;λ1, ...,λ5))− z′3 = ρ sinγ.

Taken together, equations 8 and 9 define a two-dimensional

manifold. Indeed, for each choice of β and γ , equations 8 and

9 can be uniquely resolved with respect to λ1, ...,λ5, and ρ

(provided that the corresponding Jacobi matrix is not singular).

Therefore, equations 8 and 9 implicitly define a function ρ (β ,γ)
which determines the metamer mismatch volume boundary in-

duced by the point Φ(x0). In other words, given β and γ , we

have six equations in 6 unknowns. Whenever these equations

have a solution, the solution provides the precise location of the

metamer mismatch volume’s boundary in the direction (β , γ).

Figure 2 illustrates the situation for a dichromatic sensor

system.

Calculating Metamer Mismatch Volumes
Equations 8 and 9 define the metamer mismatch boundary.

Any method of solving them will suffice. The following de-

scribes one approach that has been implemented in Matlab. To

solve equations 8 and 9 for ρ (β ,γ), we need to choose the origin

Figure 2: Illustration of the boundary of the metamer mismatch

volume described by ρ (β ) relative to the origin xαδλ for the case

of a dichromatic system. Given two sets of colour mechanisms

Φ= (ϕ1,ϕ2) and Ψ= (ψ1,ψ2) (e.g., Ψ may simply be Φ under a

different illumination), then ϒ(x) = (ϕ1(x),ϕ2(x);ψ1(x),ψ2(x)).
In the figure, only 3 of the 4 dimensions of the object-colour

solid, ϒ(X ), are shown. For a given Φ = (ϕ1,ϕ2), the bound-

ary of its metamer mismatch volume is defined by the inter-

section of the plane it defines with the boundary ϒ. To de-

scribe that boundary, an origin for the polar coordinate sys-

tem is situated at xαδλ from which the metamer mismatch vol-

ume is represented in terms of polar angle β and distance ρ to

points xopt = x3(λ ;λ1, ...,λ3) on the boundary of ϒ. In this 4-

dimensional case, the optimal functions on the boundary of ϒ

now are 3-transition functions. For a given β , the transition

wavelengths of λ , ...,λ3 of xopt are found by optimization under

the constraint that it must lie on the plane defined by Φ.

of the polar coordinate system so as to define β ,γ , and ρ . The

difficulty is that the origin must lie inside the metamer mismatch

volume, but we do not yet know what that volume is. To solve

this problem, any reflectance that is metameric to z0 = (z1,z2,z3)
under Φ will suffice; however, it is particularly convenient to

use a rectangular reflectance function from Logvinenko’s object-

colour atlas [6, 5] because the elements of that atlas are invariant

to the illuminant.

For any given point z0 = (z1,z2,z3) in the object-colour

solid Φ(X ), its αδλ coordinates in the colour atlas specify a

rectangular reflectance spectrum xαδλ that is a linear combina-

tion of an elementary step function of type m < 3 and x0.5(λ ) =
0.5. This reflectance spectrum is by construction metameric to

z0. The point Ψ(xαδλ ) is non-optimal with respect to ϒ(X ))
and is therefore guaranteed to lie within the metamer mismatch

volume and can be used as the origin Ψ(x0) =
(

z′1,z
′
2,z

′
3

)

.

Determining ρ (β ,γ) proceeds in two steps. Given (β ,γ)
the first step is the more difficult one and involves finding

the optimal 5-transition step function xopt = x5(λ ;λ1, ...,λ5)
metameric to z0 such that Ψ(x5 (λ ;λ1, ...,λ5)) lies in the direc-

tion defined by (β ,γ). The second is then simply to calculate ρ

directly using xopt from the first step. As expressed in equations

8, any optimal 5-transition step function xopt = x5(λ ;λ1, ...,λ5)
metameric to z0 under the colour map Φ is guaranteed to lie on

the surface of the mismatch volume.

To find a 5-transition spectrum xopt = x5(λ ;λ1, ...,λ5) that
is metameric to z0 according to the mapping φ , requires min-
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imizing the following objective function formed as the sum of

two error measures,

E(xopt) = EXYZ(xopt)+Eβγ (xopt).

The first term corresponds to the constraints provided by equa-

tions 8 and is

EXYZ(xopt) =
∥

∥φ(xopt)− z0
∥

∥ .

The second term ensures that the 5-transition spectrum lies in the

desired direction under ψ and is defined by

Eβγ (xopt) = arccos

(

û · (ψ(xopt)− z′0)

‖û‖
∥

∥ψ(xopt)− z′0

∥

∥

)

,

where û = (sin(β )cos(γ),sin(β )sin(γ),cos(β )) is the unit vector
in the direction given by (β ,γ).

This problem can be solved using standard optimization

tools available for Matlab. The variables are the transition wave-

lengths λ1, ...,λ5. Additional constraints are added to ensure the

correct order of the transition wavelengths (i.e., λ1 ≦ λ2 ≦ ... ≦

λ5) and to limit them to the range of the spectrum on which

the colour mechanisms are defined. Random transition wave-

lengths are selected as starting points. Selecting random starting

values from Logvinenko’s reparameterized wavelength domain

[6] works better than from the original wavelength specification

since it leads to a more even distribution across the mismatch

volume surface.

Once xopt has been found, ρ can be directly calculated as

ρ =
∥

∥Ψ(xopt)−Ψ(x)
∥

∥ .

The above method means that the metamer mismatch

boundary can be precisely computed as the distance ρ (β ,γ) from
the chosen origin Ψ(xαδλ ) to the boundary in any given direction
as specified by the angles β and γ . To model the entire boundary,

one possibility is to step through values of β and γ and thereby

obtain a regular, albeit non-uniform, sampling of the boundary.

However, this is not necessarily the best way to proceed, both

because of the computation required for the optimization and the

fact that the origin Ψ(xαδλ ) is only guaranteed to lie within the

mismatch volume, not necessarily near its center. An alternative

to a regular sampling of the angles is to generate a large num-

ber of random points over ∂ϒ(X ). The optimization is then to

minimize
∥

∥Φ(xopt)−Φ(x)
∥

∥. This eliminates the angular term

involved in Eβγ (xopt) and significantly speeds up the calculation,
but has the disadvantage that the resulting points are not neces-

sarily uniformly distributed over the mismatch volume boundary.

Metamer mismatch volumes can be a useful tool for illus-

trating the effect of an illumination change. Figure 3 shows

the mismatch volumes and their distribution in the object colour

solid for 100 Munsell chips after an illumination change from

D65 to A, using the CIE 1931 2-degree standard observer.

Conclusion
Evaluation of metamer mismatch volumes is an important

long-standing problem in colour science. Although some meth-

ods [9, 4, 2, 3, 10, 1] have been proposed for finding a solution for

various particular cases (e.g., for some special subsets of object

reflectances), no general solution has been proposed previously.

Here we have outlined an approach to this problem in its full gen-

erality. Specifically, we show how to evaluate the boundary of the

metamer mismatch volume without imposing any restrictions on

the objects considered. The theory has also been developed into

an algorithm implemented in Matlab.
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(a) The object-colour solid (transparent) with the mismatch volumes projected onto the XZ-plane.

(b) A rotated view.

Figure 3: The mismatch volumes and their distribution in the object-colour solid. The volumes appear to be similar in shape to the

object colour solid. The largest volumes occur near gray, and they become smaller nearer the object-colour solid surface.
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